There is an interesting phenomenon that multimode fibers are more expensive than single-mode fibers but the transceivers are the reverse. That is because the multimode core diameter is large and easy to align with VCSEL lasers and detectors while the single mode fiber cable is very hard to build and align transceiver components with and requires very expensive alignment equipment. Therefore, multi-mode transceivers are less expensive than single-mode transceivers. Now the 100G Ethernet network has been widely applied in data centers and there are various types of 100G fiber optic transceivers available on the market. Is there a type of 100G single-mode transceiver which can provide a low-cost solution for long-reach data center optical interconnects? The answer is Yes. The 100GBASE-PSM4 (parallel single-mode 4-lane) QSFP28 transceiver can do that.
The 100GBASE-PSM4 QSFP28 transceiver supports 100G link over eight single-mode fibers (four fibers for transmit and four fibers for receive) with data transmission distance up to 500 meters. It uses four parallel lanes for each signal direction and each lane carries 25G optical signal. In addition, the 100GBASE-PSM4 QSFP28 transceiver is structured with MTP/MPO interface, so it is usually used with single-mode fiber ribbon cable with MTP/MPO connector.
The figure below shows the working principle of the 100GBASE-PSM4 QSFP28 transceiver. The transmitter side accepts electrical input signals compatible with common mode logic (CML) levels, wile the receiver side converts parallel optical input signals via a photo detector array into parallel electrical output signals. The receiver module outputs electrical signals are also voltage compatible with CML levels. All data signals are differential and support a data rate up to 25Gbps per channel.
The 100GBASE-PSM4 QSFP28 transceiver can be used for 100G to 100G connection. As the following figure shows, two 100GBASE-PSM4 QSFP28 transceivers are plugged into Host IC, then these two transceivers are connected by MTP/MPO patch cord and MTP/MPO patch panel.
From an optical transceiver module structure viewpoint, PSM uses a single uncooled CW laser which splits its output power into four integrated silicon modulators. Therefore, the 100GBASE-PSM4 QSFP28 transceiver can be used for 100G to 4x25G connection. As the following figure shows, the 100GBASE-PSM4 QSFP28 transceiver and four 25G-LR SFP28 transceivers are connected by MTP-LC breakout cable.
The 100GBASE-PSM4 QSFP28 transceiver meets the requirement for low-cost 100G connections at reaches of 500 meters in applications that fall in between the IEEE multi-wavelength 10 kilometers 100GBASE-LR4 single-mode fiber approach and its multimode-fiber based 100GBASE-SR10 short reach specifications. It can support a link length of 500 meters over single mode fiber cable, which is sufficient for data center interconnect applications.
Write a comment